Pushing the oil recovery factor (OMC 2011)
How can ultra compact separation solutions help?

March 24th 2011, Ravenna, Italy

Erica de Haas erica.dehaas@fmcti.com
FMC Technologies/CDS Separation Systems
CDS Separation Systems - Technology areas

- Conventional separator vessel internals
- InLine separation (gas/liquid, liquid/liquid & solids)
- InLine Electrostatic Coalescer
- Produced water treatment
- Sand handling (InLine & vessel internals)
- Test facilities & modeling capabilities
- Ultra compact InLine separation systems (incl. subsea)
How can ultra compact separation help?

Enhancing brownfield oil recovery and enabling greenfield development

- **Brownfield challenges**
 - Constrained topside facilities
 - Increased water production
 - Declining oil & gas production

- **Green field challenges**
 - Heavy oil
 - Low reservoir pressure
 - Hydrate formation

- **IOR with cyclonic separation**
InLine cyclonic separation technology

- Stokes: \(v_s = \frac{d_s^2 |\rho_c - \rho_d| \ast g}{18 \mu_d} \)

Cyclonic technology
- Swirling flow
 - Increased G-force
 - Decreased residence time
 - Decreased footprint and weight
 - Increased safety, decreased inventory

Swirling flow

Pipe code

We put you first.
And keep you ahead.
InLine separation technology solutions

<table>
<thead>
<tr>
<th>Case</th>
<th>Challenge</th>
<th>Technology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Long-offset gas transportation pipelines</td>
<td>Large ΔP due to multiphase flow</td>
<td>DeLiquidiser*</td>
</tr>
<tr>
<td>FLNG with solids</td>
<td>Erosion in flexible riser</td>
<td>DeSander</td>
</tr>
<tr>
<td>Cold transport</td>
<td>Hydrate formation in deepwater pipelines</td>
<td>DeWaterer*</td>
</tr>
<tr>
<td>Subsea processing</td>
<td>Hydrostatic pressure</td>
<td>InLine systems</td>
</tr>
<tr>
<td>Debottlenecking</td>
<td>Space & weight constraints</td>
<td></td>
</tr>
</tbody>
</table>
Long offset gas transportation pipelines

- Multiphase flow
 - Vibrations
 - Unstable flare & flaring penalties
 - Large ΔP
InLine gas liquid separation equipment
vs. flow composition

InLine DeGasser InLine PhaseSplitter InLine DeLiquidiser

0% 60% 20% 95% 90% 100%

Efficiency

100%

Gas from Liquid Set Point Liquid from gas

Increasing GVF at inlet
InLine DeGasser – Application – Statoil
Statfjord B, Norway, September 2003

Process: Produced water expansion 60 bar → 6 bar

Challenge:
- Free gas in the system
 - Pipe vibrations
 - Unstable flare control

Solution:
- Install 18” InLine DeGasser
 - Decrease slug flow

Additional benefit:
- Re-use gas instead of flaring
 - 2.3 mln euro in tax savings (CO₂ emission)
InLine PhaseSplitter - Application - Statoil
Veslefrikk, Norway, 2004

Original setup

Prod. header @16 barg

VFA

VFB

10 barg

Inlet separator
InLine PhaseSplitter - Application - Statoil

Veslefrikk, Norway, 2004

- Production header pressure decrease 2 bar
- Corresponding increase in production
InLine Deliquidiser - Application - BP
ETAP, United Kingdom, May 2003

- Location: Upstream HP gas cooler discharge drum
- Flow rates: 554 MMSCFD & 56.9 m³/h (water + HC) (62barg)

Before installation
- Condensate carry-over

After installation
- System availability 97% (from 26%)
- Water dew point export gas -52°C (from -20°C)

LxWxH = 4.1x0.5x4.3m
Weight = 4208kg
InLine separation technology solutions

<table>
<thead>
<tr>
<th>Case</th>
<th>Challenge</th>
<th>Technology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Long-offset gas transportation pipelines</td>
<td>Large ΔP due to multiphase flow</td>
<td>DeLiquidiser*</td>
</tr>
<tr>
<td>FLNG with solids</td>
<td>Erosion in flexible riser</td>
<td>DeSander</td>
</tr>
<tr>
<td>Cold transport</td>
<td>Hydrate formation in deepwater pipelines</td>
<td>DeWaterer*</td>
</tr>
<tr>
<td>Subsea processing</td>
<td>Hydrostatic pressure</td>
<td>InLine systems</td>
</tr>
<tr>
<td>Debottlenecking</td>
<td>Space & weight constraints</td>
<td></td>
</tr>
</tbody>
</table>

We put you first. And keep you ahead.
Debottlenecking/subsea processing
Application areas for ultra compact separation technology

- **Perdido**
 - Greenfield
 - Gas/Liquid Separation
 - Boosting

- **Marlim**
 - Greenfield
 - Gas/Oil/Water/Sand Separation

- **BC-10**
 - Greenfield
 - Gas/Liquid Separation
 - Boosting

- **Pazflor**
 - Greenfield
 - Gas/Liquid Separation
 - Boosting

- **Tordis**
 - Brownfield
 - Gas/Oil/Water/Sand Separation
 - Boosting

- **Arctic**

- **Floating LNG**

- **Debottlenecking**

- **Ultradeep water**

We put you first. And keep you ahead.
InLine separation – Subsea processing

- Subsea separation progression
 - shallow water
 - ultra depths (>1500m)

Marlim, 2011

InLine separation & water re-injection ➔
Pilot application, intermediate step to ultra depths

Tordis, 2007

cyclonic inlet device, gas by-pass & water re-injection ➔ decrease vessel volume by 53%

We put you first.
And keep you ahead.
Subsea Inline separation skid – Marlim
Brazil, start up expected 2011

• Sand is recombined with oil & gas and produced to surface
• Water is re-injected
• Separation components
 – Inlet Inline DeSander
 – Gas harp
 – PipeSeparator
 – Outlet section
 – InLine water DeSander
 – InLine HydroCyclone

Installed @ 900 m
API ~ 21 - 25°
Tekna case study - Debottlenecking

- Early life
 - Oil: 66,000 bbl/d
 - Water: 9,450 bbl/d
 - Gas: 35.3 Mscf/d

- Late life
 - Oil: 12,600 bbl/d
 - Water: 62,900 bbl/d
 - Gas: 35.3 Mscf/d

- Water cut: 12.5%

- Water cut: 83.3%
Tekna case study - Debottlenecking

- Early life
 - Oil: 66,000 bbl/d
 - Water: 9,450 bbl/d
 - Gas: 35.3 Mcf/d
 - Water cut: 12.5%

- Late life
 - Oil: 12,600 bbl/d
 - Water: 62,900 bbl/d
 - Gas: 35.3 Mcf/d
 - Water cut: 83.3%

MPM

InLine DeGasser
2 x 6”

InLine PhaseSplitter
2 x 10”

InLine ElectroCoalescer
8” & 6”

InLine DeWaterer
21 & 10 liners
Tekna case study comparison

Original design vs. Ultra compact design

<table>
<thead>
<tr>
<th></th>
<th>Conventional</th>
<th>InLine skid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimensions [m]</td>
<td>13 x 3.5 (1st stage sep.)</td>
<td>14 x 3 x 6</td>
</tr>
<tr>
<td></td>
<td>3 x 8; 3 x 12</td>
<td></td>
</tr>
<tr>
<td>Total operational weight [T]</td>
<td>212</td>
<td>10.7</td>
</tr>
</tbody>
</table>

![Diagram of Tekna case study comparison](image)
Pushing the oil recovery factor
How can ultra compact separation solutions help?

Market trends
- Increase production
- Extend field life time
- Reduce OPEX

Ultra compact solutions
- Debottleneck separation capacity
- Decrease pressure drop
- Reduce costs
 - Maintenance
 - Inspection
 - Boosting
 - Heating
- Reduce inventory

HSE